In mathematics, a proof is a demonstration that if some fundamental statements (axioms) are assumed to be true, then some mathematical statement is necessarily true.[1][2] Proofs are obtained from deductive reasoning, rather than from inductive or empirical arguments; a proof must demonstrate that a statement is always true (occasionally by listing all possible cases and showing that it holds in each), rather than enumerate many confirmatory cases. An unproven proposition that is believed to be true is known as a conjecture.
The statement that is proved is often called a theorem.[1] Once a theorem is proved, it can be used as the basis to prove further statements. A theorem may also be referred to as a lemma, especially if it is intended for use as a stepping stone in the proof of another theorem.
Proofs employ logic but usually include some amount of natural language which usually admits some ambiguity. In fact, the vast majority of proofs in written mathematics can be considered as applications of rigorous informal logic. Purely formal proofs, written in symbolic language instead of natural language, are considered in proof theory. The distinction between formal and informal proofs has led to much examination of current and historical mathematical practice, quasi-empiricism in mathematics, and so-called folk mathematics (in both senses of that term). The philosophy of mathematics is concerned with the role of language and logic in proofs, and mathematics as a language.
The word Proof comes from the Latin probare meaning "to test". Related modern words are the English "probe", "proboscis”, "probation", and "probability", the Spanish "probar" (to smell or taste, or (lesser use) touch or test),[3] Italian "provare" (to try), and the German "probieren" (to try). The early use of "probity" was in the presentation of legal evidence. A person of authority, such as a nobleman, was said to have probity, whereby the evidence was by his relative authority, which outweighed empirical testimony.[4]
Plausibility arguments using heuristic devices such as pictures and analogies preceded strict mathematical proof.[5] It is probable that the idea of demonstrating a conclusion first arose in connection with geometry, which originally meant the same as "land measurement".[6] The development of mathematical proof is primarily the product of ancient Greek mathematics, and one of its greatest achievements. Thales (624–546 BCE) proved some theorems in geometry. Eudoxus (408–355 BCE) and Theaetetus (417–369 BCE) formulated theorems but did not prove them. Aristotle (384–322 BCE) said definitions should describe the concept being defined in terms of other concepts already known. Mathematical proofs were revolutionized by Euclid (300 BCE), who introduced the axiomatic method still in use today, starting with undefined terms and axioms (propositions regarding the undefined terms assumed to be self-evidently true from the Greek “axios” meaning “something worthy”), and used these to prove theorems using deductive logic. His book, the Elements, was read by anyone who was considered educated in the West until the middle of the 20th century.[7] In addition to the familiar theorems of geometry, such as the Pythagorean theorem, the Elements includes a proof that the square root of two is irrational and that there are infinitely many prime numbers.
Further advances took place in medieval Islamic mathematics. While earlier Greek proofs were largely geometric demonstrations, the development of arithmetic and algebra by Islamic mathematicians allowed more general proofs that no longer depended on geometry. In the 10th century CE, the Iraqi mathematician Al-Hashimi provided general proofs for numbers (rather than geometric demonstrations) as he considered multiplication, division, etc. for ”lines.” He used this method to provide a proof of the existence of irrational numbers.[8] An inductive proof for arithmetic sequences was introduced in the Al-Fakhri (1000) by Al-Karaji, who used it to prove the binomial theorem and properties of Pascal's triangle. Alhazen also developed the method of proof by contradiction, as the first attempt at proving the Euclidean parallel postulate.[9]
Modern proof theory treats proofs as inductively defined data structures. There is no longer an assumption that axioms are "true" in any sense; this allows for parallel mathematical theories built on alternate sets of axioms (see Axiomatic set theory and Non-Euclidean geometry for examples).
There are two different conceptions of mathematical proof.[10] The first is an informal proof, a rigorous natural-language expression that is intended to convince the audience of the truth of a theorem. Because of their use of natural language, the standards of rigor for informal proofs will depend on the audience of the proof. In order to be considered a proof, however, the argument must be rigorous enough; a vague or incomplete argument is not a proof. Informal proofs are the type of proof typically encountered in published mathematics. They are sometimes called "formal proofs" because of their rigor, but logicians use the term "formal proof" to refer to a different type of proof entirely.
In logic, a formal proof is not written in a natural language, but instead uses a formal language consisting of certain strings of symbols from a fixed alphabet. This allows the definition of a formal proof to be precisely specified without any ambiguity. The field of proof theory studies formal proofs and their properties. Although each informal proof can, in theory, be converted into a formal proof, this is rarely done in practice. The study of formal proofs is used to determine properties of provability in general, and to show that certain undecidable statements are not provable.
A classic question in philosophy asks whether mathematical proofs are analytic or synthetic. Kant, who introduced the analytic-synthetic distinction, believed mathematical proofs are synthetic.
Proofs may be viewed as aesthetic objects, admired for their mathematical beauty. The mathematician Paul Erdős was known for describing proofs he found particularly elegant as coming from "The Book", a hypothetical tome containing the most beautiful method(s) of proving each theorem. The book Proofs from THE BOOK, published in 2003, is devoted to presenting 32 proofs its editors find particularly pleasing.
In direct proof, the conclusion is established by logically combining the axioms, definitions, and earlier theorems.[11] For example, direct proof can be used to establish that the sum of two even integers is always even:
This proof uses definition of even integers, as well as distribution law.
Mathematical induction is not the same as induction in logic, although the general concept is related. In proof by mathematical induction, a single "base case" is proved, and an "induction rule" is proved, which establishes that if a certain case is true, then another case is true. Applying the induction rule repeatedly, starting from the independently proved base case, proves many, often infinitely many, other cases.[12] Since the base case is true, the infinity of other cases must also be true, even if all of them cannot be proved directly because of their infinite number. A subset of induction is infinite descent. Infinite descent can be used to prove the irrationality of the square root of two.
A common application of proof by mathematical induction is to prove that a property known to hold for one number holds for all natural numbers[13]: Let N = { 1, 2, 3, 4, ... } be the set of natural numbers and P(n) be a mathematical statement involving the natural number n belonging to N such that
Then P(n) is true for all natural numbers n.
It is common for the phrase "proof by induction" to be used for a "proof by mathematical induction".[14]
Proof by transposition or proof by contrapositive establishes the conclusion "if p then q" by proving the equivalent contrapositive statement "if not q then not p".
Example:
If x is odd (not even) then x = 2k + 1 for an integer k. Thus x² = (2k + 1)² = 4k² + 4k + 1 = 2(2k² + 2k) + 1, where (2k² + 2k) is an integer. Therefore x² is odd (not even).
To see the original proposition, suppose x² is even. If x were odd, then we just showed x² would be odd, even though it is supposed to be even; so this case is impossible. The only other possibility is that x is even.
In proof by contradiction (also known as reductio ad absurdum, Latin for "by reduction to the absurd"), it is shown that if some statement were true, a logical contradiction occurs, hence the statement must be false. A famous example of proof by contradiction shows that is an irrational number:
Proof by construction, or proof by example, is the construction of a concrete example with a property to show that something having that property exists. Joseph Liouville, for instance, proved the existence of transcendental numbers by constructing an explicit example.
In proof by exhaustion, the conclusion is established by dividing it into a finite number of cases and proving each one separately. The number of cases sometimes can become very large. For example, the first proof of the four color theorem was a proof by exhaustion with 1,936 cases. This proof was controversial because the majority of the cases were checked by a computer program, not by hand. The shortest known proof of the four colour theorem as of 2011[update] still has over 600 cases.
A probabilistic proof is one in which an example is shown to exist, with certainty, by using methods of probability theory. This is not to be confused with an argument that a theorem is 'probably' true. The latter type of reasoning can be called a 'plausibility argument' and is not a proof; in the case of the Collatz conjecture it is clear how far that is from a genuine proof.[15] Probabilistic proof, like proof by construction, is one of many ways to show existence theorems.
A combinatorial proof establishes the equivalence of different expressions by showing that they count the same object in different ways. Often a bijection between two sets is used to show that the expressions for their two sizes are equal. Alternatively, a double counting argument provides two different expressions for the size of a single set, again showing that the two expressions are equal.
A nonconstructive proof establishes that a certain mathematical object must exist (e.g. "Some X satisfies f(X)"), without explaining how such an object can be found. Often, this takes the form of a proof by contradiction in which the nonexistence of the object is proved to be impossible. In contrast, a constructive proof establishes that a particular object exists by providing a method of finding it. A famous example of a nonconstructive proof shows that there exist two irrational numbers a and b such that is a rational number:
The expression "statistical proof" may be used technically or colloquially in areas of pure mathematics, such as involving cryptography, chaotic series, and probabilistic or analytic number theory.[16][17][18] It is less commonly used to refer to a mathematical proof in the branch of mathematics known as mathematical statistics. See also "Statistical proof using data" section below.
Until the twentieth century it was assumed that any proof could, in principle, be checked by a competent mathematician to confirm its validity.[5] However, computers are now used both to prove theorems and to carry out calculations that are too long for any human or team of humans to check; the first proof of the four color theorem is an example of a computer-assisted proof. Some mathematicians are concerned that the possibility of an error in a computer program or a run-time error in its calculations calls the validity of such computer-assisted proofs into question. In practice, the chances of an error invalidating a computer-assisted proof can be reduced by incorporating redundancy and self-checks into calculations, and by developing multiple independent approaches and programs. Errors can never be completely ruled out in case of verification of a proof by humans either, especially if the proof contains natural language and requires deep mathematical insight.
A statement that is neither provable nor disprovable from a set of axioms is called undecidable (from those axioms). One example is the parallel postulate, which is neither provable nor refutable from the remaining axioms of Euclidean geometry.
Mathematicians have shown there are many statements that are neither provable nor disprovable in Zermelo-Fraenkel set theory with the axiom of choice (ZFC), the standard system of set theory in mathematics (assuming that ZFC is consistent); see list of statements undecidable in ZFC.
Gödel's (first) incompleteness theorem shows that many axiom systems of mathematical interest will have undecidable statements.
While early mathematicians such as Eudoxus of Cnidus did not use proofs, from Euclid to the foundational mathematics developments of the late 19th and 20th centuries, proofs were an essential part of mathematics.[19] With the increase in computing power in the 1960s, significant work began to be done investigating mathematical objects outside of the proof-theorem framework,[20] in experimental mathematics. Early pioneers of these methods intended the work ultimately to be embedded in a classical proof-theorem framework, e.g. the early development of fractal geometry,[21] which was ultimately so embedded.
Although not a formal proof, a visual demonstration of a mathematical theorem is sometimes called a "proof without words". The left-hand picture below is an example of a historic visual proof of the Pythagorean theorem in the case of the (3,4,5) triangle.
An elementary proof is a proof which only uses basic techniques. More specifically, the term is used in number theory to refer to proofs that make no use of complex analysis. For some time it was thought that certain theorems, like the prime number theorem, could only be proved using "higher" mathematics. However, over time, many of these results have been reproved using only elementary techniques.
A particular way of organising a proof using two parallel columns is often used in elementary geometry classes in the United States.[22] The proof is written as a series of lines in two columns. In each line, the left-hand column contains a proposition, while the right-hand column contains a brief explanation of how the corresponding proposition in the left-hand column is either an axiom, a hypothesis, or can be logically derived from previous propositions. The left-hand column is typically headed "Statements" and the right-hand column is typically headed "Reasons".[23]
The expression "mathematical proof" is used by lay people to refer to using mathematical methods or arguing with mathematical objects, such as numbers, to demonstrate something about everyday life, or when data used in an argument are numbers. It is sometime also used to mean a "statistical proof" (below), especially when used to argue from data.
"Statistical proof" from data refers to the application of statistics, data analysis, or Bayesian analysis to infer propositions regarding the probability of data. While using mathematical proof to establish theorems in statistics, it is usually not a mathematical proof in that the assumptions from which probability statements are derived require empirical evidence from outside mathematics to verify. In physics, in addition to statistical methods, "statistical proof" can refer to the specialized mathematical methods of physics applied to analyze data in a particle physics experiment or observational study in cosmology. "Statistical proof" may also refer to raw data or a convincing diagram involving data, such as scatter plots, when the data or diagram is adequately convincing without further analysis.
Proofs using inductive logic, while considered mathematical in nature, seek to establish propositions with a degree of certainty, which acts in a similar manner to probability, and may be less than one certainty. Bayesian analysis establishes assertions as to the degree of a person's subjective belief. Inductive logic should not be confused with mathematical induction.
Psychologism views mathematical proofs as psychological or mental objects. Mathematician philosophers, such as Leibniz, Frege, and Carnap, have attempted to develop a semantics for what they considered to be the language of thought, whereby standards of mathematical proof might be applied to empirical science.
Philosopher-mathematicians such as Schopenhauer have attempted to formulate philosophical arguments in an axiomatic manner, whereby mathematical proof standards could be applied to argumentation in general philosophy. Other mathematician-philosophers have tried to use standards of mathematical proof and reason, without empiricism, to arrive at statements outside of mathematics, but having the certainty of propositions deduced in a mathematical proof, such as Descarte’s cogito argument.
Sometimes, the abbreviation "Q.E.D." is written to indicate the end of a proof. This abbreviation stands for "Quod Erat Demonstrandum", which is Latin for "that which was to be demonstrated". A more common alternative is to use a square or a rectangle, such as □ or ∎, known as a "tombstone" or "halmos" after its eponym Paul Halmos. Often, "which was to be shown" is verbally stated when writing "QED", "□", or "∎" in an oral presentation on a board.